

Table of Particles Including Known and VFD-Predicted Particles Potentially Discoverable at the LHC

Description

The following table lists all the known particles from the Standard Model and new particles predicted by the **Vibrational Field Dynamics (VFD)** framework that could potentially be discovered at the **Large Hadron Collider (LHC)**. For each particle, we provide its name, symbol, mass, electric charge, spin, status, possible production mechanisms at the LHC, and additional comments.

Standard Model Particles

Particle Name	Symbol	Mass (GeV/c ²)	Charge (e)	Spin Status	Production Mechanism at LHC	Comments
Quarks						
Up Quark	u	~0.0022	+2/3	1/2 Known	Proton-proton collisions	Component of protons and neutrons
Down Quark	d	~0.0047	-1/3	1/2 Known	Proton-proton collisions	Component of protons and neutrons
Charm Quark	c	~1.27	+2/3	1/2 Known	Gluon fusion, quark-antiquark annihilation	Heavy quark, forms charmed mesons
Strange Quark	s	~0.096	-1/3	1/2 Known	Proton-proton collisions	Present in strange mesons
Top Quark	t	~172.76	+2/3	1/2 Known	Gluon fusion, quark-antiquark annihilation	Heaviest known quark, decays rapidly
Bottom Quark	b	~4.18	-1/3	1/2 Known	Gluon fusion, quark-antiquark annihilation	Forms bottom mesons and baryons
Leptons						
Electron	e ⁻	~0.000511	-1	1/2 Known	Not produced directly	Stable, fundamental particle

Particle Name	Symbol	Mass (GeV/c ²)	Charge (e)	Spin Status	Production Mechanism at LHC	Comments
Electron Neutrino	ν_e	<2.2e-9	0	1/2 Known	Weak interactions	Very low mass, rarely interacts
Muon	ν_μ	~0.10566	-1	1/2 Known	W boson decay	Decays into electrons and neutrinos
Muon Neutrino	ν_μ	<0.17e-6	0	1/2 Known	Weak interactions	Very low mass, rarely interacts
Tau	ν_τ	~1.77686	-1	1/2 Known	W boson decay	Heaviest lepton, decays quickly
Tau Neutrino	ν_τ	<18.2e-6	0	1/2 Known	Weak interactions	Very low mass, rarely interacts
Gauge Bosons						
Photon	γ	0	0	1 Known	Emitted in various processes	Mediates electromagnetic force
W Boson	W^\pm	~80.379	± 1	1 Known	Produced in proton collisions	Mediates weak force
Z Boson	Z^0	~91.1876	0	1 Known	Proton-proton collisions	Mediates weak force
Gluon	g	0	0	1 Known	Emitted in strong interactions	Mediates strong force
Scalar Boson						
Higgs Boson	H^0	~125.10	0	0	Gluon fusion, Known vector boson fusion	Gives mass to other particles

New Particles Predicted by VFD Potentially Discoverable at the LHC

Particle Name	Symbol	Mass (GeV/c ²)	Charge (e)	Spin Status	Production Mechanism at LHC	Comments
Exotic Mesons						

Particle Name	Symbol	Mass (GeV/c ²)	Charge (e)	Spin Status	Production Mechanism at LHC	Comments
Tetraquark (example)	T_{4q}	~3.9 or 4.2	0	0 or 1	Proton-proton collisions producing heavy quarks	Possible candidates: $Z_c(3900)$
Exotic Baryons						
Pentaquark (example)	P_c	~4.3 or 4.5	+1	1/2 or 3/2	Proton-proton collisions producing heavy quarks	Observed candidates: $P_c(4312)^+$
Vibrational Partner Particles						
Radial Excitations of $\psi(2S)$ Mesons		Varies (e.g., 3.686, 10.023)	0	1	Higher-energy collisions	Excited states of known mesons predicted by VFD
Vibrational Gauge Bosons						
Heavy Photon-like Boson	V'	>1000	0	1	High-energy proton-proton collisions	Would indicate extra dimensions or new forces
Dark Matter Candidates						
VFD Dark Boson	VFD Dark Boson	~1 or 1000	0	1	Missing energy signals in collisions	Weakly interacting, would escape detection directly

Note: The masses and properties of the new particles are speculative and based on the VFD framework's predictions. The exact values could vary depending on the specifics of the VFD model and ongoing theoretical developments.

Detailed Explanations

1. Exotic Mesons and Baryons

- **Tetraquarks (T_{4q}):**

- Composed of two quarks and two antiquarks.
- VFD predicts the existence of stable tetraquark states due to specific vibrational modes.
- **Examples:**
 - $Z_c(3900)$: Observed at ~ 3.9 GeV/c \bar{c} , possibly a charmonium-like tetraquark.
- **Production at LHC:**
 - Produced in high-energy collisions that create heavy quark pairs (e.g., charm quarks).
 - Detected via decay into known particles like J/ψ and pions.
- **Pentaquarks ($P_c(4312)^+$):**
 - Composed of four quarks and one antiquark.
 - VFD suggests certain vibrational configurations allow for stable pentaquark states.
 - **Examples:**
 - $P_c(4312)^+$: Observed by the LHCb collaboration.
 - **Production at LHC:**
 - Arise in processes involving baryons and heavy quarks.
 - Detected via decay into J/ψ and protons.

2. Vibrational Partner Particles

- **Radial and Orbital Excitations:**
 - Particles like $\psi(2S)$ and $\Upsilon(2S)$ are excited states of charmonium and bottomonium.
 - VFD predicts additional excited states corresponding to higher vibrational modes.
- **Production at LHC:**
 - Higher collision energies can populate these excited states.
 - Decay into lower states emitting photons or pions.

3. Vibrational Gauge Bosons

- **Heavy Photon-like Boson (V'):**
 - Predicted by some extensions of VFD involving extra vibrational modes of gauge fields.
 - Mass could be in the TeV range.
- **Production at LHC:**
 - Through processes like quark-antiquark annihilation.
 - Would decay into lepton pairs, leading to a resonance in the invariant mass spectrum.

4. Dark Matter Candidates

- **VFD Dark Boson (VFD Dark Boson):**
 - A hypothetical particle mediating interactions in the dark sector.
 - Weakly interacting, making it a candidate for dark matter.
- **Production at LHC:**
 - Could be produced in collisions but escape detection, resulting in missing transverse energy.
 - Events with missing energy and recoil jets or photons could hint at its existence.

5. Supersymmetric Particles (If VFD Includes SUSY)

- **Squarks (\tilde{q}) and Sleptons (\tilde{l}):**
 - Superpartners of quarks and leptons with spin 0.
 - **Production at LHC:**
 - Squarks produced via strong interactions; sleptons via electroweak interactions.
 - Decay chains involve Standard Model particles and neutralinos.
- **Gluino (\tilde{g}):**
 - Superpartner of the gluon with spin 1/2.
 - **Production at LHC:**
 - Strong production due to color charge.
 - Decays into quarks and squarks.
- **Neutralinos ($\tilde{\chi}$):**
 - Mixtures of superpartners of neutral gauge and Higgs bosons.
 - Lightest neutralino often stable and a dark matter candidate.
 - **Production at LHC:**
 - Produced in decays of heavier SUSY particles.
 - Escape detection, leading to missing energy signatures.

Experimental Strategies at the LHC

- **High-Energy Collisions:**
 - Increasing collision energy enhances the production probability of heavy or high-mass particles predicted by VFD.
- **Detection of Decay Products:**
 - **Invariant Mass Reconstruction:**
 - Combine detected particles to reconstruct the mass of the parent particle.
 - **Missing Energy Analysis:**
 - Search for events with missing transverse energy indicative of undetected particles.
- **Analysis Techniques:**
 - **Resonance Searches:**
 - Look for peaks in mass spectra corresponding to new particles.
 - **Event Selection:**
 - Apply selection criteria to isolate potential signals from background processes.
 - **Statistical Methods:**
 - Use statistical analysis to determine the significance of any observed excesses.

Comments and Considerations

- **Current Status:**
 - As of now, no conclusive evidence for supersymmetric particles or heavy vibrational gauge bosons has been found at the LHC.
 - Observations of exotic hadrons like tetraquarks and pentaquarks align with some VFD predictions.
- **Energy Limits:**

- The LHC has energy limitations (~13 TeV center-of-mass energy) that may restrict the discovery of very heavy particles.
- Future colliders with higher energies may be needed to explore the full spectrum of VFD-predicted particles.

- **Theoretical Uncertainties:**

- The properties of new particles predicted by VFD are model-dependent and may vary.
- Ongoing theoretical work is required to refine predictions and guide experimental searches.

Conclusion

The **Vibrational Field Dynamics** framework predicts the existence of new particles beyond the Standard Model, some of which could potentially be discovered at the LHC. By considering particles as vibrational modes of underlying fields, VFD provides a unique perspective on particle physics. Experimental efforts at the LHC focus on detecting these particles through various production mechanisms and decay signatures. Continued collaboration between theorists and experimentalists is essential to test the predictions of VFD and advance our understanding of fundamental physics.

Category

1. Vibrational Field Dynamic

Date

2026/01/29

Date Created

2024/11/01

Author

leesmart