™
LN
W

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Element Modeling

Description

Dynamic VFD Model of Calcium (20 protons, 20 neutrons)

L ® eole
gl u‘. o ® s

'Oulo-l

cely .

' ,o-'-o-d

P- ae
n'.'.oc:y‘ *enem

‘...-.. M?n :....--.':#-..-W

0 v o ...'--pssﬂ‘

L) - ‘
* ln-—_'"‘: LA T W

-t ""0- oasecdl

ool m-’.‘-':

¢le o
® e
.

oy 8P
2
.-I L]

Wlﬂ\

e LR
o 0,000t ..'.6’9{

%

el

Proton
Neutron

2.00

L75

150

125

r1.00 Z

0.75

0.50

To.25

|0.00

Page 1
https://vibrationalfielddynamics.org

) VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Dynamic VFD Model of Calcium (20 protons, 20 neutrons)

@® Proton
@ Neutron

Page 2
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Dynamic VFD Model of Iron (26 protons, 30 neutrons)

Proton
Neutron

Page 3

https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Dynamic VFD Model of Iron (26 protons, 30 neutrens)

Proton
Neutron

Page 4
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Dynamic VFD Model of Lithium (3 protons, 4 neutrons)

Proton
Neutron

0.25

To.zo

0.15

0.10

Page 5
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

Dynamic VFD Model of Lithium (3 protons, 4 neutrons)

Proton
Neutron

Pythion Code to Simulate the Elements

Copy and Run the code in a Python enviroemt for example c:/ElementSim.py Moscovium

i mport nunpy as np

import matplotlib.pyplot as plt

fromnpl _toolkits. nplot3d inport Axes3D
frommatplotlib.ani mati on i nport FuncAni mati on

i nport sys

CGol den rati o constant
golden ratio = (1 + np.sqgrt(5)) / 2

Define magi c nunbers for nuclear stability
magi c_nunbers = [2, 8, 20, 28, 50, 82, 126]

Lookup table for elenments (atom c nunbers mapped to proton and neutron count
Neutron counts are approxi mate for the nost stable isotope of each el enent.
el enent _data = {
"Hydrogen": (1, 0), "Helium': (2, 2), "Lithiunt: (3, 4), "Berylliun: (4
“Carbon": (6, 6), "N trogen": (7, 7), "Oxygen": (8, 8), "Fluorine": (9, 10
"Sodiunt': (11, 12), "Magnesiunm': (12, 12), "Alum nuni: (13, 14), "Silicon"
“Sul fur": (16, 16), "Chlorine": (17, 18), "Argon": (18, 22), "Potassiunt:
"Scandium': (21, 24), "Titanium': (22, 26), "Vanadium': (23, 28), "Chromu

Page 6
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

“lron": (26, 30), "Cobalt": (27, 32), "N ckel": (28, 31), "Copper": (29, 3
"Gl liunt: (31, 39), "Germaniun': (32, 41), "Arsenic": (33, 42), "Seleniun
"Krypton": (36, 48), "Rubidiun: (37, 48), "Strontiunt: (38, 50), "Yttriun
“Ni obiunt: (41, 52), "Ml ybdenunt: (42, 54), "Technetiunt: (43, 55), "Ruth
“Pal | adi unt': (46, 60), "Silver": (47, 61), "Cadmi um': (48, 64), "Indiunt

“Antinony": (51, 71), "Telluriunm: (52, 76), "lodine": (53, 74), "Xenon"

"Barium': (56, 81), "Lanthanunt: (57, 82), "Ceriunt: (58, 82), "Praseodym
"Pronmethiunt: (61, 84), "Samariuni: (62, 88), "Europiuni: (63, 89), "Gado
"Dysprosium': (66, 97), "Holmum': (67, 98), "Erbiuni: (68, 99), "Thuliuni
“"Lutetiumt': (71, 104), "Hafnium': (72, 106), "Tantalunt: (73, 108), "Tungs
"Csmunt: (76, 114), "lridiunm': (77, 115), "Platinuni: (78, 117), "Gold":

“Thal l'ium': (81, 123), "Lead": (82, 125), "Bisnuth": (83, 126), "Pol oni uni
"Radon": (86, 136), "Francium': (87, 136), "Radiuni: (88, 138), "Actiniun
"Protactiniuni: (91, 140), "Uraniuni: (92, 146), "Neptuniuni: (93, 144), "
“Americiunt: (95, 148), "Curiumt: (96, 151), "Berkeliunt: (97, 150), "Cal

"Einsteiniunm': (99, 153), "Fermunt: (100, 157), "Mendel eviuni: (101, 157)
"Lawrenciunt: (103, 159), "Rutherfordium: (104, 157), "Dubniuni: (105, 15
"Bohriunt: (107, 157), "Hassium': (108, 161), "Meitneriuni: (109, 159), "L
"Roent geniunt': (111, 161), "Coperniciun: (112, 173), "N honium': (113, 17
"Moscoviunm': (115, 173), "Livernoriunm': (116, 178), "Tennessine": (117, 17

}

Function to check if a nunber is a magi c nunber
def is_magi c_nunber(n):
return n in magi c_nunbers

Function to generate 3D coordinates for a vibrating spiral path with time-ba

def gol den_spiral _oscillating(numpoints, scale=1, offset_angle=0, z scal e=0.1
angl es = np.arange(num points) * (2 * np.pi / golden_ ratio) + offset_angle
radii = scale * np.sqrt(np.arange(num points))
X radii * np.cos(angles) * (1 + 0.1 * np.sin(2 * np.pi * frequency * t))
y radii * np.sin(angles) * (1 + 0.1 * np.cos(2 * np.pi * frequency * t))
z z_scale * np.arange(numpoints) * (1 + 0.05 * np.sin(4 * np.pi * frequ
return x, y, z

Function to display usage information
def display_usage():
print("Usage: python script.py <el enment_nane> [<proton_count> <neutron_cou
print (" Exanpl e: python script.py Carbon")
print("Exanple: python script.py Custontl enent 20 20")
sys.exit(1)

Retrieve el enent nane, proton count, and neutron count from comrand |ine arg
if len(sys.argv) < 2:
di spl ay_usage()

el enent _nane = sys. argv|[1]

Check if the elenent is in the | ookup table
if elenment_name in el enent _data:
num prot ons, num neutrons = el enent _dat a[el ement _nane]
el se:
If not found, check if proton and neutron counts are provided
if len(sys.argv) != 4:
print(f"Error: Elenent '{elenment_nanme}' not found in | ookup. Please pr
di spl ay_usage()

Page 7
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

try:
num protons = int(sys.argv[2])
num neutrons = int(sys.argv|[3])
except Val ueError:
print("Error: Proton and neutron counts nust be integers.")
di spl ay_usage()

Check if proton or neutron count is a magi c nunber to adjust stability prope
is_proton_magi c = is_magi c_nunber (num protons)
IS neutron_magic = is_magi c_nunber (num neutrons)

Animation function for dynamc oscillation with trails and stability colorin
def update(frane, ax, proton_trails, neutron_trails, frequency):

ax. cla()

Stability color and transparency based on magi ¢ nunber status
proton_color = "blue' if is_proton_magic else 'cyan

neutron _color = 'red" if is_neutron_nagic el se 'orange

stability alpha = 0.8 if is_proton_nagic or is _neutron_nmagic else 0.5

Generate positions with oscillations
proton_x, proton_y, proton_z = golden_spiral _oscillating(num protons, scal
neutron_x, neutron_y, neutron_z = golden_spiral _oscillating(num neutrons,

proton_trails.append((proton_x, proton_y, proton_z))
neutron_trails.append((neutron_x, neutron_y, neutron_z))

if len(proton_trails) > 30:
proton_trails. pop(0)

if len(neutron_trails) > 30:
neutron_trails. pop(0)

for idx, (p_x, p_y, p_z) in enunerate(proton_trails):

ax.scatter(p_x, p_y, p_z, color=proton_color, s=10, al pha=(idx + 1) /
for idx, (n_x, n.y, n_z) in enunerate(neutron_trails):

ax.scatter(n_x, n_.y, n_z, color=neutron_color, s=10, al pha=(idx + 1) /

ax.scatter(proton_x, proton_y, proton_z, color=proton_color, s=50, al pha=s
ax.scatter(neutron_x, neutron_y, neutron_z, color=neutron_color, s=30, alp

for i in range(m n(len(proton_x), len(neutron_x))):
ax.plot([proton_x[i], neutron_x[i]], [proton_y[i], neutron_y[i]], [pro

ax.set _title(f"Dynam c VFD Model of {elenent_nane} ({num protons} protons,
ax. | egend(l oc=" upper right")

ax. set x|l abel ("X")

ax.set _ylabel ("Y")

ax.set_zl abel ("Z")

Visualization setup

fig =plt.figure(figsize=(10, 10))

ax = fig.add _subplot (111, projection=" 3d")
ax.set box_aspect([1, 1, 1])

proton_trails =[]

neutron_trails = []

frames = 100

Page 8
https://vibrationalfielddynamics.org

VIBRATIONALFIELDDYNAMICS.ORG
contaact@vibrationalfielddynamics.org

frequency = 0.02

Create ani mation
anim = FuncAni mation(fig, update, franmes=franes, fargs=(ax, proton_trails, neu

plt.show)

Category
1. Vibrational Field Dynamic

Date
2026/01/29
Date Created
2024/10/28
Author
leesmart

Page 9
https://vibrationalfielddynamics.org

